
 978-1-7821-2734-7/20/$31.00 ©2020 IEEE
 1

Blackbird: Object-Oriented Planning, Simulation, and
Sequencing Framework Used by Multiple Missions

Christopher R. Lawler, Forrest L. Ridenhour, Shaheer A. Khan, Nicholas M. Rossomando, Ansel Rothstein-Dowden
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

{christopher.r.lawler, forrest.ridenhour, shaheer.khan, nicholas.m.rossomando, ansel.rothstein-dowden}@jpl.nasa.gov

Abstract— Every JPL flight mission relies on activity planning
and sequence generation software to perform operations. Most
such tools in use at JPL and elsewhere use attribute-based
schemas or domain-specific languages (DSLs) to define
activities. This reliance poses user training, software
maintenance, performance, and other challenges. To solve this
problem for future missions, a new software called Blackbird
was developed which allows engineers to specify behavior in
standard Java. The new code base has over an order of
magnitude fewer lines of code than other JPL planning
software, since no DSL or schema interpreter is needed. The
use of Java for defining activities also allows mission adapters
to debug their code in an integrated development environment,
seamlessly call external libraries, and set up truly multi-
mission models. These efficiency gains have significantly
reduced the amount of development effort required to support
the software. This paper discusses Blackbird’s design,
principles, and use cases.

Within a year of its completion, six projects have begun using
Blackbird. The Mars 2020 mission is using Blackbird to
generate command sequences for cruise and Mars approach.
By using multi-mission models, the Mars 2020 cruise
adaptation was created in fewer than three months by three
engineers at less than half time each. Work has begun to use
Blackbird for communications planning during Mars 2020
surface operations. The Psyche mission uses Blackbird to
generate its reference mission plans in development. Full
simulations with 123,000 activities and 4.7 million resource
value changes complete in about one minute. Psyche is also
working towards using Blackbird in operations to support
integrated activity planning and generate sequences. The
InSight project is using Blackbird for mission planning in
operations, replacing error-prone manual processes. For the
NISAR mission, Blackbird evaluates threats to the
commissioning phase timeline. The Europa Lander pre-project
used Blackbird to perform a trade study. The ASTERIA
mission is automating sequence generation in Blackbird. Going
forward, more interested projects are likely to begin using
Blackbird, and the capabilities of the core and multi-mission
models will keep growing.

TABLE OF CONTENTS
1. INTRODUCTION .. 1
2. USER RESEARCH .. 2
3. BLACKBIRD SOFTWARE DESIGN 4
4. MULTI-MISSION MODELS AND PATTERNS........... 8
5. BLACKBIRD MISSION SUCCESSES 10
6. CONCLUSIONS .. 19
ACKNOWLEDGEMENTS .. 19
REFERENCES .. 19
BIOGRAPHY.. 20

 1. INTRODUCTION
Every deep-space mission must solve a variety of planning
problems throughout development and operations, and
systems-level simulation is typically employed to validate
the resulting plans. While the problems are unique to each
mission, there are typically broad similarities between them
that have driven the creation of persistent and sometimes
even multi-mission planning frameworks whose goals are to
best enable accurate and timely formulation and disposition
of plans. One common trait among these is that they
encapsulate spacecraft behaviors as ‘activity types’, which
define to the simulation engine the effect an activity
instance of that type should have on the results. Activities
can write commands to output sequences to send to the
spacecraft, impact resources such as battery state of charge
or data volume, or give a user context they can use to make
better decisions. The choice of how to define activity types
is important, since the definitions should be intuitive and
easy to modify, easily understood by the simulation engine,
and expressive enough to fully capture the effects of the
activity.

Most activity planning software in use at NASA’s Jet
Propulsion Laboratory (JPL) and elsewhere in the space
operations community, such as APGen [1], ASPEN [2],
MSLICE [3], COCPIT, SPIKE [4], PAGE, MAPPS [5], and
more, use domain-specific languages (DSLs) or attribute-
based schemas to define constraints on activities and their
behavior. This reliance on interpreting custom languages
poses user training, core software maintenance,
performance, extensibility, and other challenges, as
explained in a following section. There have been

2

frameworks that constructed parts of this definition in
standard programming languages – for instance, the MOST
scheduler used by the Philae team in 2015 was backed by
the ILOG Scheduler, which places activities based on
constraints defined in standard C++ [6]. The planning tool
CLASP being used for the NASA-ISRO Synthetic Aperture
Radar (NISAR) mission’s science phase uses a mixture,
where spacecraft information is defined in a schema while
custom scheduler logic can be written in C++ [7]. In 2017,
Pierre Maldague proposed an extension to APGen called
A++, where the user would define each Turing-complete
activity in C++. In early testing, this change resulted in an
order of magnitude speed improvement and demonstrated
the potential of defining behavior in a standard
programming language.

In part inspired by that work, in early 2018 a team of
planning and software engineers at JPL began working on a
new simulation environment that was to be as lightweight
and easy to maintain as possible with an emphasis on user
experience. Out of that effort came Blackbird, a Java-based
object-oriented discrete event simulator intended as a multi-
mission spacecraft simulation framework that enables
engineers to write code in a standard language that is
executed directly by an industry-standard environment.
Within a year of its introduction, six projects had begun to
use Blackbird to solve a variety of critical planning
problems. This paper discusses the research and principles
behind, the design of, and the mission use cases of
Blackbird.

 2. USER RESEARCH
As the idea for Blackbird began to solidify, the development
team performed extensive research that took into
consideration the use cases of seven JPL missions. This
section presents some of the ideas learned from that effort
and the resulting actions taken.

 Problems with Schema and DSL-based Activity Definitions

When implemented well, DSLs and schemas allow for users
to provide specifications for a model with significantly less
code, which can reduce cost and make the code more
readable [8]. The use of a DSL can also reduce the computer
science knowledge needed by adapters. However, the use of
DSLs or schemas shifts the responsibility for the
optimization, maintenance, and development more onto the
developers of the core software, which leads to significantly
more challenging and costly development of the core
software [9]. Over time, the increased difficulty maintaining
the software leads to challenges finding developers to
maintain and improve the core, which in turn makes the
software more painful to use by mission adapters.

Writing code for planning and simulation frequently
requires the use of complex logic, which includes the use of
data structures, conditionals, loops, functions, and calls to
external models or scripts. However, both schemas and
DSLs limit the capabilities offered to adapters, and any

increase in capability requires significant effort on the part
of the developers of the core software. For example, a
schema for defining a data model might start with an
attribute for “amount of data generated” for a given activity.
But then, a requirement might get added for representing
data volume generated given a data rate and a period of
time. Now, attributes must be added for data rates and
durations. Next, a requirement could get added that an
activity should be able to look up the data generated in a
table, or call a script to calculate the data generated by an
activity. These feature requests are very common in
planning and simulation, and each mission using a schema
for this purpose needs to account for them. Over time, there
is a trend towards arbitrarily complex behavior needing to
be represented, which can lead to hard-to-maintain
workarounds if the core code is not designed with this idea
in mind.

The Mars Science Laboratory (MSL) and Mars 2020
missions both use schemas in their activity dictionaries,
which define the model used for planning and simulation.
MSL’s MSLICE software uses an Extensible Markup
Language (XML)-based schema to define activities and
models. However, even after adding several capabilities to
the MSLICE schema, a feature to inject arbitrary JavaScript
code into the XML was required to meet all of the feature
requests. This made the schema very difficult to work with,
both from a usability and maintainability perspective, since
that JavaScript cannot be debugged normally. The Mars
2020 software COCPIT is still in development, but a
JavaScript capability has already been added into its schema
for math calculations.

The APGen planning software, which has been used
successfully for 10 missions in operations and development,
has a DSL which evolved over many years due to similar
scope increases. It too started as a schema-like
representation of activities and their simple impacts to
resources, but evolved over time into a Turing complete
language capable of arbitrary complexity [1]. Despite
adding this capability, mission adapters still have to write a
significant amount of code to replicate functions available in
libraries found in common languages. For example, APGen
does not have uppercase or lowercase methods, so adapters
need to define their own functions which parse a string and
return an uppercase or lowercase version of it. There are
more complicated cases of this that can involve thousands of
lines of code. In APGen adaptations, methods for simple
conversions are sometimes duplicated under different names
due to lack of standard libraries and the complexity of the
custom adaptation. As will be discussed later in the paper,
the performance of these tools has also been an issue.

The scope creep seen in the current DSLs and schemas at
JPL makes maintaining them costly, and finding developers
with the right expertise is challenging. There is currently
only a single APGen core developer, and MSLICE has
required multiple developers since it began to be used in
operations to support the core software and schema. In

3

addition, training to become a capable adapter of the
MSLICE activity dictionary schema takes about six months
and requires previous familiarity with the problem space.
The transferability of the knowledge gained from working
on both the core software or the mission-specific
adaptations has also been a factor in finding developers.
Using a schema or DSL is specific to the application, and
cannot be easily applied to another role, so many developers
hesitate before making a long commitment to create or
maintain these types of software.

Lastly, the use of a schema can obfuscate the underlying
system model, and users may not understand how activity
types they are creating impact the larger system, which
could lead to incorrect simulation results. A common
solution to this, which Mars 2020 has chosen, is to limit the
complexity of the system model, but there are many benefits
of having a detailed model. For example, Europa Clipper’s
high-fidelity APGen model has been instrumental in the
design of the spacecraft and the mission [10], and would not
be possible with a simplistic schema.

JPL Mission Use Cases

Blackbird was designed with a well-understood set of use
cases in mind, and priority was given to missions currently
in development or operations. Generally, Blackbird use
cases can be broken into three major categories: planning,
simulation, and sequence generation. Blackbird is not the
first project to address these problems, and its developers
heavily leveraged the lessons learned from past software.

The first category, planning, is done during all phases of a
JPL mission’s life cycle. Planning involves the scheduling
of various activities or events over a period of time. Prior to
mission operations, this work is largely mission planning,
which encompasses the higher-level design and scheduling
of mission activities. Mission planning has been done by
hand for many missions, but newer missions are making use
of software to mostly automate this type of work. Mission
planning work often continues throughout operations, but in
parallel to activity planning, which is done on a shorter time
scale with more detail. Activity planning usually involves
more human-in-the-loop coordination, but is gradually
moving towards letting software optimize a plan, where
users provide constraints rather than specific times when
activities will occur. Modern operations efforts typically
now involve plans that are a combination of automatically
placed and user-defined activities. Activity planning
software must enable such a mixture to fully support
mission design and operations.

The second category, simulation, generally involves
representing the behavior of a system over time. Like
planning, simulation can be done at many levels of fidelity.
The purpose of the simulation is to validate that the plan
meets the requirements put on it, and that it will keep the
spacecraft in a safe and expected state throughout execution.
Thus, the level of detail of the results needed by the project
drives the model fidelity, which can evolve along with the

mission phase. Simulation is often done in parallel with
planning, but does not have to be. The calculations involved
in a simulation can often be time-consuming to perform, at
times taking several minutes or hours to complete. Common
bottlenecks during a simulation include calculating
geometric information, thermal modeling, or tracing the
execution of commands.

The last category of use cases for Blackbird, sequencing,
refers to the auto-generation of sequences of spacecraft
commands based on an activity plan. Sequence generation is
usually reserved for missions in late development or
operations, but it is a mission-critical part of those phases of
JPL missions, and must be addressed to successfully operate
a spacecraft. Although different JPL spacecraft often have
analogous functions, the format and contents of the
commands and sequences can be drastically different, due to
their connection to spacecraft flight software. The
generation of these sequences ranges from completely
automated to hand-generated, and the software supporting
operations must account for the fact that not all sequences
will be generated in the same way.

Planning, simulation and sequencing make up the majority
of the uplink portion of spacecraft operations. The other half
of mission operations, downlink, involves analyzing
telemetry and assessing spacecraft health and safety. There
typically is a need to update simulations and activity plans
based on spacecraft telemetry. For example, a power model
must be updated with a new battery state of charge when
telemetry is received from the spacecraft. This handoff
between downlink and uplink is a common problem across
missions, and must be supported. Uplink software typically
does not read spacecraft telemetry directly, but uses curated
subsets of it as initial conditions for future simulation runs.

There are two general types of users of planning systems:
operators and adapters. Operators are typically systems
engineers or engineers with domain-specific knowledge, and
will often have little software experience. A common
requirement is for these users to be able to interact with a
planning system without looking at or writing code. To
support the use case of operators, missions always wrap the
underlying scheduling and simulation component in a full
planning system with graphical user interfaces (GUIs),
command line capability, and reporting tools. In order to
limit scope, Blackbird was designed with this paradigm in
mind, and operators only interface with the larger mission-
specific planning system which incorporates Blackbird.

Adapters are users who write mission-specific code which
defines the behavior of the spacecraft in a simulation, as
well as the activities that can be performed by the
spacecraft. Adapters are therefore the type of users who
interface directly with Blackbird. Adapters can range from
having a strong background in computer science to having
no prior exposure to software engineering, as is the case for
many engineers defining models in Blackbird. There are
some cases where adapters also go on to be some of the
operators of the planning system.

4

Mission-Driven Development of Blackbird

The core code of Blackbird was designed and completed
over a period of four months, with another four months
creating multi-mission spacecraft models and proof-of-
concept mission-specific adaptations. Within one year of
that, six missions had already begun to use Blackbird to
solve a variety of critical problems. This rapid development
was made possible by an agile development process and
developing entirely from the bottom up. Throughout its
development, parts of the code were being refined as
requirements evolved, and the code was developed with the
expectation that future changes would be required.

The scope of development and the deadlines were driven by
JPL mission needs, with fixed schedules from launch dates
and critical reviews, leaving no room for delays in the
deliveries. The main requirements of Blackbird were driven
by the use cases of the Psyche, Europa Lander, Europa
Clipper, Interior Exploration using Seismic Investigations
Geodesy and Heat Transport (InSight), Mars 2020, Juno,
and Mars Reconnaissance Orbiter (MRO) missions, and all
of the features necessary for these missions were completed
in the first four months of development. During and after
this process, it was required to demonstrate that Blackbird
was an improvement over previous software in accuracy,
capability, ease of use, performance, and maintainability
before it could be adopted by missions.

Early on in the development of Blackbird, extensive
interviews with operators and developers on the missions
listed above took place. In addition to this, the developers of
Blackbird had worked on the APGen adaptations of several
of these missions, which contributed to the overall
requirements and concept of operations. Across all operators
and developers of JPL planning and simulation software, the
most common theme was the importance of usability, which
was mentioned even more than performance or
maintainability. In addition to this, operators expressed
frustration when the software was designed with specific
assumptions about the way it would be used, which often
led to arduous workarounds to make the software meet
common use cases on missions. Blackbird was designed to
avoid these sorts of assumptions, and leaves room for
mission adapters to extend the framework to meet any need.

 3. BLACKBIRD SOFTWARE DESIGN
Design Principles

During its development and completion, the Blackbird
developers had in mind some principles which ended up
being the key to its rapid success.

a. Programmer efficiency is not only a nice-to-have—Any
other criteria one could use for evaluating a framework like
security, performance, extensibility, etc., are so enhanced by
developers being able to work efficiently that it is of
paramount importance to create an intuitive development
environment. All the mission work mentioned in the rest of

the paper was only possible to do quickly because Blackbird
adheres to this principle.

b. Gall’s Law—“A complex system that works is invariably
found to have evolved from a simple system that worked. A
complex system designed from scratch never works and
cannot be patched up to make it work. You have to start
over with a working simple system” [11]. Blackbird was
designed to be as simple as possible; the core codebase is
less than 10,000 lines of code including frequent comments
and whitespace, whereas other planning tools like APGen,
ASPEN, and MSLICE all have well over 100,000 lines of
code in their cores. The simplicity meant the program was
quick to form and start meeting mission needs. This
simplicity also translates directly into maintainability, since
a new developer will have much less to learn. A common
reason for the gradual degradation of multi-mission tools is
having 5-12 developers build the system then only keeping
one developer once it is in ‘maintenance mode’. Blackbird
was primarily built by two developers in four months at
half-time each, so there will be less of this kind of drop-off
issue.

c. Design from the bottom-up, not top-down—Mission
planners and schedulers are the ones who know their needs
best, and so the top priority should be meeting those and not
trying to impose a technology then fitting it to the need.
Blackbird was developed grassroots from the people doing
development and operations work.

d. Inherit Proven Ideas, Not Legacy Code—Blackbird’s
high-level design and how it conceptualizes activities and
resources are inherited from APGen, which has been used
successfully on over 10 missions. This similarity lessened
the possibility that any key use case was overlooked by the
requirements, or that simple ideas were getting over-
complicated. However, a conscious decision was made not
to double or triple the size of the code base in order to be
backwards compatible and support adaptations written in the
APGen DSL. In addition to making the core significantly
less maintainable, supporting the DSL would hinder the
transition to an efficient development. The need to rewrite
key multi-mission models was a positive impetus to
improve their code quality and make them more performant.

e. Make Truly Multi-Mission Code—Write every piece of
potentially multi-mission code as if you personally will have
to use it to support multiple missions. This means writing
requirements from the holistic combination of all potential
customer missions’ use cases, not taking literal requirements
from any one mission. Design interfaces so that mission
engineers can do planning how they feel most comfortable,
instead of presupposing how a mission should do planning.
Sections 4 and 5 will detail the time saved by multiple
missions using the same code. Blackbird itself owes its
viability to open source software, as well as the multi-
mission tool Resource and Activity Visualization Engine
(RAVEN), which was built before Blackbird existed but
was generic enough to be extremely useful to Blackbird
users without any modifications.

5

Figure 1. Adaptation Symbol Glossary used in diagrams
throughout this paper. Each symbol has a short

explanation of what it represents above it. Activities that
just set resources will be represented as simple rectangles.

f. Avoid Boilerplate and Favor Readable Code—Help
developers writing in your framework create as little non-
business-logic as possible.

Blackbird Overview

Blackbird ‘core’ is a discrete event simulation engine with
scheduling and sequence generation capabilities. The events
that are added to the timeline are Java thread objects, which
when executed contain activity behavior defined in specific
ways. The Blackbird framework provides basic classes that
engineers can extend; those base classes contain
minimalistic machinery that governs the order in which
activity instances are processed, how information appears in
output files, how one can interact with the model, and more.
One partially analogous framework to Blackbird is
MATLAB, which provides useful extra functions for
common tasks in a specific domain, while also providing an
execution environment that processes the defined constructs.

An ‘adaptation’ refers to a set of subclasses that define the
behaviors of a spacecraft and their effects. In addition to
those classes, missions have choices for how they interface
with the .jar compiled file. A typical output format is a
standard Time-Ordered-List (TOL), which can contain all
the activities and resource changes in the engine’s memory.

Framework Constructs

The two classes most fundamental to Blackbird are Activity
and Resource. Most of the work of an adapter is extending
Activity to create specialized activities that set Resource
objects appropriately. A plan consists of a set of time-tagged
Activity instances, and the simulation results are the
Resource value histories throughout the plan.

An Activity is a human-level abstraction of a spacecraft
behavior, or a behavior that affects the spacecraft.
Spacecraft behaviors are processes like performing a
Trajectory Correction Maneuver, beginning transmitting
data to earth, or collecting science data. The environment
can influence the spacecraft in ways such as ground station
availability, the amount of charged particle impingement on
solar arrays, or temperatures that affect how much heater
energy the spacecraft will need. For clarity, one can speak
of ‘activity types’ and ‘activity instances.’ An activity type
is the definition of what the planning engine should do when
an activity instance of that type is placed. An activity
instance is the union of an activity type, a start time, and any
other parameters the type requires to know how to behave.
In order to create an activity type in Blackbird, one must
extend an Activity superclass and implement between one
and five methods: model() controls how activities impact
resources, decompose() provides a way to create child
activities outside of simulated time, dispatchOnCondition()
provides a way to create child activities during simulation,
setCondition() controls the condition for the dispatch, and
sequence() controls how the activity writes to sequences.
The methods available in the Activity class equally support
multiple scheduling paradigms: one where adapters

explicitly specify the algorithm by which to place child
activities, another where adapters tie activity creation to
resource changes, and a third where requests and constraints
are passed to a depth-first-search based constraint satisfier.

Resources should be thought of as variables that remember
the times they were changed throughout the simulation. The
class encapsulates the value, provides the equivalent of
getter and setter methods, and provides the automation to
write out its time history to the core output mechanisms.
Due to the generic setup, any data type can be tracked in a
resource, from Booleans to Times to quaternions. Blackbird
also supports arrayed resources and automated resources
that track values and update without needing an Activity.

Blackbird supports active and passive constraint checking.
Active constraint-based scheduling is done using the
Condition class, which represents a resource comparison to
a threshold. The Constraint class does passive constraint
checking and is more useful for manually created plans that
are not valid by construction. The Window class represents
a beginning and end Time, and encapsulating it makes many
common planning paradigms much more natural. To
produce sequences, the Sequence class is also important.

Notation Introduction and Worked Example

Figure 1 contains the symbol glossary that will be used to
build the structure diagrams of Blackbird code throughout
the rest of the paper. Not all diagrams will be at the same
level of detail, but ideally having a common icon set
improves comprehension. These symbols may be color-
coded to indicate multi-mission components or those shared
by multiple adaptations within a single mission.

6

Figure 2. An illustration of the state of the engine after different commands are sent to it.
(a) Activity 1 is placed manually and decomposes into children activities 2-5.

(b) Activities 1-5 are modeled and affect resource A over time.
(c) A forward-dispatch scheduler places activity 6 during modeling when resource A is equal to a specific value.

(d) Activity 6 is now part of the model and immediately starts affecting resource A.
(e) Modeling is over, but resource values persist. Activity 7 is placed manually and decomposes into activity 8.
(f) The sequence command is run. Activities 5 and 8 expand into commands which are a part of a sequence.

Figure 2 represents an example Blackbird run that exercises
decomposition, modeling, forward-dispatch scheduling, and
sequence generation. The caption interprets the result of
sending each command to the engine.

Modularity

Blackbird was designed so that each core class is well
encapsulated, so that changes to the internal workings of
each class should not affect the behavior of other classes.
Each class has a small number of public methods that all
other classes must go through, so implementation changes
simply have to continue to meet the contract of those public
methods. After Blackbird had been completed for a year,
there was a desire to replace Blackbird’s original Time class

with the Java version of the jpl_time library, which used a
different backing data structure to store time values.
Changing over to the new Time class only required
changing 10 non-import lines of code in surrounding
classes. As another example, currently Blackbird’s
ActivityInstanceList is backed by an ArrayList. However,
the ActivityInstanceList public methods for iteration,
addition, and searching do not depend on that
implementation. If in the future the team wanted to change
out the backing structure to, for example, a TreeMap for
faster searching, or a combination of ArrayList and
HashMap for fast iteration and lookup, the code changes
would be entirely confined to that less than 200 line-long
class and would not affect any other classes in the code.

7

Figure 3. Speed scaling of APGen and Blackbird for
representative identical test activities.

Maintainability and Code Health

Blackbird core was developed with current software
development best practices in mind. Unit tests provide 80%
line coverage of the entire core codebase as of October
2019. All Blackbird changes go through a pull request
process where another developer must approve the changes.
There are generic regression tests that need to pass before
pull requests can be merged, and most missions have
mission-specific regression tests that are used to evaluate
changes. The static code analyzer SonarQube is regularly
run on the code and as of October 2019 it reports a technical
debt ratio of less than 5% and zero bugs (there are 8
intended false positives). There are Javadoc-style and inline
comments frequently throughout the code. Doxygen, a
standard documentation generator, has been set up to create
reference pages and dependency diagrams. Mission adapters
are encouraged but not forced to follow these best practices.

Blackbird uses standard imports whenever possible and
does not use custom data structures. The libraries that
Blackbird depends on are all actively maintained and will be
for the foreseeable future. The build process is defined in
the software management tool Apache Maven and takes
about 2 seconds, so rapid iteration is possible. To date, all
core changes that missions have requested were
implemented between half a day to two weeks after.

Ease of Use

Much of Blackbird’s ease of use derives directly from how
adapters write code directly in an industry-standard
programming language. Features such as an integrated
development environment (IDE) with debugging, static code
analysis, performance profiling, ease of calling external
libraries, online reference resources, native test frameworks,
formal dependency management, and more have all reduced
development time and uncaught errors.

Java has been GitHub’s second most-used language since
2013 [13] and the first most-used on the TIOBE index since
2015 [14], so new developers may already be familiar with
it, and all adapters benefit from an active community and
helpful resources. To create an activity in Blackbird, only a
small subset of the full Java language is required, so even
new adapters can make contributions quickly, then add more
complex behavior as their proficiency grows. Blackbird
adapters typically become proficient in about two weeks
full-time. Blackbird adaptations listed in later sections all
required people working only part-time for limited
commitments, whereas traditionally missions need to
dedicate at least one full-time person for years. If a project
decides that they want to use another language to write their
activities, they can seamlessly incorporate Python-like
Groovy, JavaScript-like Kotlin, or Lisp-like Clojure, which
can all inherit Blackbird’s Java base classes. Groovy and
Kotlin proofs of concept were built which motivated
multiple projects using Blackbird to consider partially
switching to one of these other languages to further improve
the new adapter experience.

Based on experience training more than 10 people to use
Blackbird, the largest impediments to ease of use are not the
language syntax, but the use of an IDE for adapters without
prior experience, and understanding when their adaptation
code will execute as part of the simulation. One is not
forced to use an IDE to develop in Blackbird, but the initial
investment to learn to use one is often worth the reduced
risk and improved productivity afterwards. Stepping
through code in the debugger has greatly helped adapters
understand when their code will be called, which will
always be non-trivial for any complex system. There is a
detailed adapter’s guide which walks new users through
defining and deploying an adaptation.

Performance

Blackbird v2018-09 was put through a number of
benchmarking tests to ensure that its performance would
meet mission needs. It was primarily compared with APGen
v34.5, since that is the tool the customer missions would
have used if Blackbird were not available. The most
intensive test involved both engines running exactly the
same adaptation such that the time-ordered list output files,
which contain the complete state of the engine at the end of
execution, produced by APGen and Blackbird were exactly
the same. This test exercised decomposition, modeling,
function calls, referencing past resource values, constraint
checking, pausing activity instances and resuming them
later in simulated time, referencing global/public static
variables, arithmetic, parameter passing, and file writing.
The number of activities and resource usages were varied
and the speed and memory impacts of that change was
recorded. The results of the test are shown in Figure 3.

In terms of speed, Blackbird scales with O(n) where n is the
number of activities and resource usage nodes, whereas
APGen scales with at least O(n2). For reference, large
adaptations typically produce 150,000 activities that are
much more complex than these test ones, creating millions

8

of resource records. At about that number of activities,
APGen took about an hour to finish the simulation and write
the file, whereas Blackbird took about 20 seconds. In terms
of memory consumption, Blackbird scales with O(log(n)) in
terms of number of activities and resource usage nodes,
whereas APGen scales with O(n).

Missions are seeing this speed increase for their real
applications. When comparing the production APGen and
test Blackbird Insight Cruise adaptations, it took Blackbird
11 seconds to produce identical sequences as APGen, which
took 49 seconds on the same machine, which is about 5x
faster than the machine actually used in operations. The
memory used by Blackbird was 155MB while 282MB was
used by APGen. The speed it takes each mission’s
adaptation to run is listed in the following sections, but none
of them take over one minute, except for geometry resource
generation for Psyche, which takes 8 minutes. A similarly
complex geometry computation for a Europa Clipper task
takes APGen multiple times longer.

At least four factors contribute to these large differences in
run speed and memory usage.

a. Lack of Custom Interpreter Overhead—Blackbird allows
simulation code to be executed directly by the Java Virtual
Machine, which has been optimized for two decades by
teams of programming language and compiler experts. A
naïve interpreter executes a DSL’s instructions without
branch prediction, loop unrolling, function inlining, and
other industry standard compilation techniques [15].

b. Data Structure Scaling—Blackbird’s internal data
structures were carefully chosen for optimal speed and
memory footprint. As an important example, its resource
histories are stored in a Java-standard red-black tree
(TreeMap), which provides the O(log(n)) search for ordered
data while providing O(log(n)) insertion. In contrast,
APGen’s resource histories are stored in a custom data type
that degenerates to O(n) iteration for common operations.

c. Object-Oriented Referencing—In Blackbird, all internal
structures and adaptation data are objects, so they can
directly invoke methods of each other, whereas with a DSL
events must be passed back to a monolithic interpreter
which then decides what to invoke.

d. Optimized Adapter Algorithms—Blackbird offers adapters
freedom to optimize their code. While there are limited data
structures available to adapters within a DSL, Blackbird
adapters can easily use efficient data structures. In the
APGen InSight cruise adaptation, there are several resources
which have their values set by listening for changes to other
resources. Each time one of the resources changes value, the
algorithm in APGen loops through all resources being
watched and checks their state. In Blackbird, custom
automated resources keep track of the number of other
resources which are in a certain state, removing the loop.
This leads to optimized resources which are up to 50 times
faster to evaluate in Blackbird than in APGen.

 4. MULTI-MISSION MODELS AND PATTERNS
Adapters working in the Blackbird framework have
prioritized creating multi-mission code, which have grown
into sophisticated and well-documented models that make it
easy for missions to start doing complex work immediately.
This section also presents design patterns that have emerged
naturally in multiple adaptations based on the tools the
framework provides.

Multi-Mission Models

 The Blackbird core software itself knows almost nothing
about spacecraft – it could be used as part of a planning
system in many different industries. When a new mission
adopts Blackbird, it is desirable to have to reinvent as little
of the wheel as possible and learn from past missions.
Knowledge about spacecraft and infrastructure behavior is
thus encoded in a set of multi-mission models, each of
which is responsible for a different typical subsystem. For
multiple adaptations, the multi-mission models are capable
enough that the mission-specific code required is much
smaller than the amount of multi-mission code the
adaptation depends on. The list of multi-mission subsystems
follows the set of APGen models that most notably Europa
Clipper is currently using [10]: ground station, geometry,
data, power, telecommunications, guidance navigation and
control (GNC), propulsion, and more.

In addition to the models, by which is meant the
implementations of resource-setting and scheduling code for
these subsystems, the Blackbird multi-mission project aims
to provide a multi-mission Java interface for each subsystem
that defines the methods needed to interact with a model of
it. This way, even if no multi-mission model is provided for
that subsystem currently, mission adaptations are forward-
compatible with moves to higher-fidelity models with no
change to code for any activity types. This kind of
encapsulation is only possible because the framework is
object-oriented and flexible.

The Blackbird multi-mission ground station model is the
most sophisticated model in the current suite, and is the
most critical for sequence generation tasks, which is one of
the fundamental Blackbird use cases. The model is
composed of 6,000 lines of code, which is about 2/3rd the
size of Blackbird core itself. The ground station model
offers the following capabilities for missions: view period
and elevation generation from a variety of inputs, station
allocation parsing and comprehension, spacecraft doppler
mode transition tracking, spacecraft antenna state model,
station allocation generation based on a depth-first-search
constraint solver, output to common DSN formats, and
built-in information about DSN stations. The Blackbird
implementation of these is partially based on the
corresponding APGen model, but was completely
restructured for maintainability and is more advanced; for
example, the Blackbird ground station model processes
allocations for Delta-Differential One-way Ranging (delta-
DORs) correctly without the need for editing input files, and

9

Figure 4. Structure of section of multi-mission ground
station model that simulates doppler transitions

the APGen model does not allow for multi-mission
parameterized track generation. Figure 4 diagrams the
structure of the DSN multi-mission model when reading in
files and providing doppler mode information to mission-
specific schedulers.

The Blackbird multi-mission geometry model is another
critical model, particularly to provide context and schedule
activities in mission planning work. It makes heavy use of
Blackbird’s native integration with NASA’s Navigation and
Ancillary Information Facility (NAIF)’s Spacecraft
ephemeris, Planetary ephemeris, Instruments, C Pointing
Matrix, Event Info (SPICE) library in order to calculate
geometric quantities of interest, such as: upleg and downleg
time, spacecraft position and velocity with respect to
different bodies, spacecraft orbit parameters, angles between
different bodies or points on bodies, coordinates of
subpoints on bodies, eclipse windows, occultation windows,
and more. Each set of quantities can be queried at user-
specified timesteps, which can be fixed or variable so more
samples are generated around less linear regions. For the
latter, a desired tolerance can be provided that feeds into the
determination of when the next timestep should be.
Typically for mission planning work, once all geometry is

computed, interpolating between points is sufficient, but
those building operational tools would likely favor querying
SPICE at exactly the time they are interested in.

The Blackbird data model provided is medium-fidelity and
conceptually similar to data models most APGen
adaptations employ. Data is generated at set rates inside
various prioritized bins, and activities can change those rates
or make sudden changes to the volumes in the bins. For
most missions to date, that level of detail is all that could be
tracked due to imprecision in activity definitions and
generation of simulation initial condition files. The main
purpose of the model is not to track all data products
onboard at any given time, but for each downlink pass
provide an estimate of how much data is expected to be
downlinked from what instruments, and how much will be
left onboard.

The multi-mission models live in a different repository from
Blackbird core and are packaged separately, so missions can
import only the interfaces and models that will be useful to
them. All the interfaces in the multi-mission model
repository have complete Javadoc comments, and Doxygen
has also been run over the multi-mission models. The
resulting diagrams are progress towards the goal of new
adapters of making the multi-mission models as standard
and easy to use as possible. As developers on missions write
code that could be multi-mission, they are encouraged to
contribute back to the multi-mission repository, and
regression tests are used to make sure updates do not break
use cases of the missions already using the model in
question. All of the Blackbird core and multi-mission model
code is available to everyone at JPL, and so are the largest
mission-specific adaptations. This openness facilitates the
sharing of models.

Design Patterns

Through working on APGEN adaptations, Blackbird’s
multi-mission models and the mission work listed in the
next section, there have emerged common design patterns
that would need to be supported by any similar software.

Dependency Layers—One common pattern is dividing the
calculations up into dependency layers. Systems engineers
are already used to thinking about what information needs to
be present for the next step in a process to execute, so this
has come naturally to adapters thus far. Each layer
comprises a set of decompose() methods that create
activities whose placement does not depend on each other,
and then a remodel which runs the placed activities and sets
resources so that the next set of resource-aware
decompose() methods can run. Each layer of decomposition
runs only once exactly when specified, which is performant
and intuitive. Furthermore, this pattern provides an easy
method to start from a known point later, since intermediate
layers of activities can be saved off to a file then read back
in before resuming scheduling.

10

Generator-Type Activities—Blackbird is a discrete event
simulator, but many models or external programs it must
interact with use fixed time steps. Additionally, even if
information is not being used regularly to calculate other
products, one might wish to write out values every so often
for display and review purposes. A simple pattern to bridge
the two is to have a ‘Generator’ activity with a model()
section that contains a loop, where each loop iteration waits
until a later simulated time. The amount the method waits
can be fixed for a fixed timestep calculation, or variable. At
each simulated time the loop stops at, the method can query
or direct a model, and/or calculate a resource value and store
it.

Visualization-Only Activities—Particularly in mission
planning but even in operations, there are situations where
extra code has to be run to create activities that will simply
provide context for the user, not affect any other activities or
resources. In some cases, these can make up a significant
fraction of the total number of activities in the timeline.

Generic Activities—Missions experience diminishing
returns trying to capture the behaviors that may only be
performed once, or have negligible impact on resources. In
these situations, a useful pattern is to create a ‘Generic’
activity type, where adapters set up parameterized high-
level behavior that fulfills all the goals of the adaptation.
These generic activities let planners fill in those parameters
for each instance as they would for a schema-defined
activity. Common parameters for generic activities include
amount of energy used, data volume used, unique name, and
what sequence executes them, but specifics vary by mission.

Configuration of Schedulers—The key to not having to
make planning code changes when requirements change in
operations is to have well-parameterized activities and
schedulers. Parameterization also makes it easier to perform
trade studies in development. Parameterization of schedulers
is typically handled differently than for simple resource-
using activities. For simple activities, the constructor
accepts parameter values that could be edited in a GUI via a
typical edit activity panel. However, schedulers’ placement
of child activities can depend on a large number of
variables, some of which multiple schedulers are
referencing, which makes constructors extremely brittle and
constricts the flow of information around the simulation.
Furthermore, these variables may be complicated data
structures that are more easily typed in a different format
than the most convenient structure to do calculations. A
common pattern to address these issues is to give static
parameters values in a text input configuration file, which
must be read in prior to executing the schedulers. This
reading in process can also be used to convert information
from formats easiest for humans to input into more efficient
data structures. Blackbird also has a native
SET_PARAMETER command that can change public static
variables in the adaptation so that what-if scenarios can be
run when Blackbird is connected to an external GUI without
having to go back out to files.

 5. BLACKBIRD MISSION SUCCESSES
Blackbird has been adopted by six missions that span from
cubesats to flagships, and it has consistently decreased cost
and risk on each of them to date, in some cases significantly.
The framework has proved so natural and flexible that it is
not just being used in the traditional centralized activity
planning and sequence generation roles, but also for tasks
that until now have been done manually in Excel or by
homegrown scripts where it would not have been worth
working in a harder-to-use formal activity planning system.

Mars 2020

Mars 2020 is an upcoming Mars rover mission which will
launch in July 2020. The mission has an 8-month cruise to
Mars, before landing in February 2021. Mars 2020 became
one of the first missions to use Blackbird, and is doing so
for both cruise and surface operations, for three functions:
generating command sequences for the cruise and Mars
approach, generating Deep Space Network (DSN) related
input files for cruise and surface development, and
automating mission planning during surface operations.
Blackbird has already shown successful results for cruise
thread tests, which are medium-scale tests designed to
exercise a specific aspect of the development, and received
an award for its use on the mission.

During Mars 2020’s cruise to Mars, commands are sent
from Earth which are necessary to control the spacecraft.
There are several types of commands sent, but the most
common types are for communicating with Earth and
performing routine diagnostic and checkout activities. These
commands were originally planned to be generated in a
largely manual way for Mars 2020, but the project decided
to fully automate their generation using Blackbird. This
investment resulted in a decrease in the amount of time
taken to produce a single sequence from one or two weeks
to less than five seconds. This automation not only reduced
the staffing required to operate during cruise, but also
reduces the risk of human error, due to the numerous
calculations needed to correctly determine the timing of the
spacecraft commands to communicate with Earth. The Mars
2020 cruise adaptation was developed in less than three
months by three part-time recent college graduates, and
replaced a schema-based software which provided less
automation that had been in development for more than six
months. During an early Mars 2020 cruise thread test,
Blackbird was identified as the easiest 2020 tool to use by
operators with little coding experience.

During the mission phase “Approach, Entry, Descent and
Landing” (AEDL), the spacecraft requires different
commands to communicate with Earth than used in the
cruise phase, and the logic to generate them is also different.
However, a large portion of the code can be shared between
the two adaptations. There are also multi-mission models
used by the Mars 2020 adaptations which were validated
during parallel operations with InSight during its cruise.

11

Figure 5. Activities scheduled by Blackbird for Mars 2020 Cruise sequence generation, as displayed in RAVEN

The cruise adaptation reads in several input files
representing geometry and times when the DSN is allocated
to communicate with Mars 2020. The adaptation then calls
the multi-mission ground station model to calculate
resources necessary to show when spacecraft doppler modes
change and which DSN stations are in view at a given time.
Afterwards, a series of adapter-defined schedulers are run
which provide information such as changing data rates or
periods when a delta-DOR event will take place. Next, a
scheduler to calculate the periods when communication will
occur is run, which generates the final activity plan. Finally,
the sequences and resources are written out to several files,
before they are then validated and radiated to the spacecraft.
Figure 5 shows an output activity plan from the code, and
Figure 6 shows the structure of the Cruise adaptation.

The Mars 2020 AEDL adaptation is similar, but requires
different scheduling logic for the commands which are
generated. As shown below in Figure 7, very little code
needed to be written to produce different commands and
communication behavior, since the multi-mission ground
station model and the majority of the cruise adaptation
schedulers can be shared across mission adaptations.

In addition to the Mars 2020 cruise and AEDL adaptations,
Blackbird is currently being used on the mission to generate

geometry and DSN-related files for thread tests. These files
are called the DSN View Periods file (VP) and the Station
Allocation File (SAF), and they represent when each DSN
station is in view of the spacecraft and when the spacecraft
is allocated for communication with a given station. These
files can take more than five hours for a trained DSN
scheduler to create, which quickly adds up for repeated
tests. The Blackbird adaptation is only a few hundred lines
of code due to use of the multi-mission DSN track
scheduler, but can generate new test cases for any time
period in seconds. This small adaptation has been used most
recently for the launch thread test, but will soon be used for
cruise and AEDL tests. There is also a need for this
capability during the surface phase for testing. This
adaptation is still in development, but is planned for use in
early 2020.

Another planned use of Blackbird for Mars 2020 is for the
mission planning communication process during operations.
There is a need during surface operations to schedule not
only when the spacecraft communicates directly with Earth,
but also when it communicates with the current fleet of
Mars orbiters. Work on this adaptation is beginning, and
Blackbird should be able to support a more robust and easier
to implement solution than custom scripting.

12

Figure 6. Structure of Mars 2020 Cruise adaptation.
Red components are shared between the Mars 2020

adaptations, and blue components represent multi-mission
models.

Figure 7. Structure of Mars 2020 AEDL adaptation.
Red components are shared between the Mars 2020
adaptations, and blue components represent multi-

mission models.

Psyche

Psyche is a Discovery-class mission that will launch a solar
electric propulsion spacecraft in 2022 to the asteroid (16)
Psyche, a particularly metallic small body where much can
be learned about the history of the early solar system. After
a three and a half-year cruise phase including a Mars
Gravity Assist, the spacecraft will arrive at the asteroid in
2026, bringing with it an imager, a magnetometer, a gamma
ray and neutron spectrometer, and a high-gain antenna
(HGA) with which to perform gravity science
measurements. The operations concept is relatively simple
and is based on Dawn’s, which had a highly successful low-
thrust mission to two planet-like bodies in the asteroid belt
[16]. However, the Psyche team desires to improve on the
Dawn process where prudent in order to decrease risk and
cost in operations. To respond to issues caused by a lack of
a formal mission planning function during Dawn operations,
Psyche’s mission system anticipates having a mission
planner continue into operations, and to use an integrated
activity planning tool to reduce manual effort and manage
potential conflicts earlier. As a Discovery-class mission,
Psyche does not have the resources to build an ambitious
planning tool by itself, like flagships frequently do. The
mission chose to use Blackbird to do mission planning
scheduling and simulation in development, and is currently
defining Blackbird’s role in operations and what interfaces
it will need to have with other tools.

Development—In Phases B and C, Psyche’s mission
planning team has built an adaptation that, starting from just
SPICE kernels and a small list of manually planned
activities, produces the reference Mission Plan Timeline, as
displayed in Figure 8. This timeline includes activity
placement down to the level of individual images or DSN
tracks, resource histories such as the projected onboard data
volume throughout the entire mission, and produces reports
that check if plan constraints are satisfied. Each run of the
simulation produces 123,000 activities, like science periods,
Deep Space Optical Communications (DSOC)
opportunities, reaction wheel unloads, and more. These
activities combined produce 4.7 million discrete resource
changes throughout the simulation.

When new SPICE kernels are delivered, a ‘Geometry’ main
method can be run that starts about a dozen geometry-
calculating activities, some of which follow the ‘Generator’
pattern described in a previous section, and some of which
make SPICE geometry finder calls. Which geometric
quantities are calculated for which bodies, and what
timesteps are used, is configurable via an input file. For the
configuration values used currently, this simulation run
takes about 8 minutes. Most of the computation time is
spent inside the SPICE calls, which is difficult to reduce
since SPICE is currently not thread-safe. However, this
process only has to be run when kernels change, which is
every few months typically, not every time any individual
trade study has to be run.

13

Figure 8. A screenshot of Psyche’s reference Mission Plan Timeline, generated by Blackbird and displayed in RAVEN

Once the geometry TOL is computed, it can be read into the
‘Mission Planning’ main routine along with a list of a small
number of manually placed activities. This main routine is
the one run repeatedly for most trade studies, and its output
is what populates the reference Mission Plan. After reading
in the files, the code starts the decompose() methods of
about 10 schedulers, which perform functions like
determining the science observation vs. communication
windows during each subphase of orbital ops, placing
DSOC keep-out-zones, and determining instrument states.

After those, the DSN Track scheduler is run. The track
scheduler itself and the interface to it are part of the multi-
mission suite, and Psyche passes in 50 formal but human-
readable rules that represent about 16 high-level ideas of
when tracks should occur, examples of which could be
“Continuous coverage using the spacecraft’s HGA from
between 3 and 7 days after launch”, or “During Cruise
phase, there should be 3 no-downlink thrust verification
tracks every week.” Complex track types can be appended
together, as there are several cases where the mission
planning team has determined it is desirable to have a
telemetry track, a delta-DOR, and a DSOC opportunity all
proximate to each other. However, the durations of the
tracks do not necessarily need to be fixed, and view periods
may not allow tracks to be completely adjacent, so the
depth-first search scheduler tries varying the track plan
recursively within the provided constraints until it finds one
that meets the rules. If a track is over-constrained and

cannot be placed, only it is omitted from the plan and the
rest of the tracks are still scheduled. For Psyche, the process
of placing 2,200 tracks in this manner takes fewer than 5
seconds.

Once the tracks and other activities which use data and
power are placed, a REMODEL command is issued to the
engine which produces resource timelines such as
instrument states, data onboard per category, available array
power, and more. The model() method for HGA Track
references a custom telecommunications model through the
multi-mission telecommunications interface and the multi-
mission rate-based data model through the multi-mission
data model interface. The activities that affect power also go
through the multi-mission power interface, so while the
power model is low-fidelity now, once a higher-fidelity one
is available, none of the activity definitions need to change.

Once the modeling pass is over, the main method runs a few
decomposition sections that place activities which do not
affect resource values but help provide context and a more
intuitive sense of the situation to the RAVEN visualization
of the plan. Finally, in addition to the TOL, a data budget
spreadsheet and scorecard that compares the DSOC
opportunities provided against requirements are written out.
The total scheduling, simulation and output together takes
about one minute on a 2015 MacBook Pro. Prior to this
capability, mission planners were using a mix of isolated
C++, MATLAB scripts, and Excel which, while capable,
were not designed to be used by a broader team or

14

Figure 9. High-level view of structure of and data
flow through Psyche Blackbird adaptation

maintained into operations. Before the Blackbird work
began, doing simulation with a new set of assumptions
required files being passed between multiple team members,
so one could not rapidly iterate on a design. The current
structure of the new system is presented in Figure 9.

The mission planning team has used these new capabilities
to support several trade studies, including the impact of
regularizing observation sequences on the data budget, the
feasibility of adding or removing DSN tracks during
different phases of the mission, the sensitivity of orbital
operation science activity timing to ephemeris uncertainty,
the impact of using multiple data rates per pass instead of a
single one, and more. The simulation output is also used to
verify that there are sufficient DSOC opportunities to meet
requirements and that the mission margin policies are being
met.

Work is ongoing to use the output of the simulation to
provide at-a-glance information about whether more
requirements were met, like total time available for thrust.
Blackbird is currently being used to help evaluate
requirements for higher-fidelity subsystem models, and will
be extended to communicate with those models once
available.

Operations—A Blackbird adaptation is being built to
perform several key roles in Phase E, including background
sequence generation, thrust sequence generation, activity
plan constraint checking, subsystem simulation, and serving
as an interface to plan review tools. Psyche will be able to
leverage activity definitions, constraints, and connections to
other models set up for mission planning work for the
operations activity planning work. As a proof of concept,
one Psyche sequence engineer has already built the
capability with Blackbird to generate valid Dawn
background sequences for any set of Dawn input files. By
leveraging the Blackbird multi-mission DSN model, this
capability took less than 40 hours of work to implement.
Psyche expects that using Blackbird will significantly
decrease cost and risk over the alternative used for Dawn,
which was a patchwork of Excel and standalone scripts that
did not share code with other teams or missions. In large
part due to how long it took these tools to generate products,
Dawn’s sequence generation and validation process took
weeks per sequence, which ideally can be significantly
decreased. Additionally, the Dawn toolset had to be
frequently rewritten during different mission phases or when
orbits changed, which can be avoided for the Psyche
mission by appropriately parameterizing the schedulers.

InSight

InSight, JPL’s most recent Mars surface mission, is
dedicated to exploring the Martian interior. On InSight, the
mission planner’s primary responsibility is negotiating and
scheduling Earth-Mars communication windows with other
operating missions. This involves negotiating and
scheduling 1) use of the DSN for Direct-to-Mars X-Band
communication and 2) Ultra High Frequency (UHF) relay
communication to the five current Mars orbiters. Using
Martian orbiters as relay assets allows InSight to take
advantage of the much more powerful antennas onboard the
relay assets to transmit several orders of magnitude more
data than is possible via Direct-to-Earth X-Band with the
lander’s own antenna. However, relay asset use must be
negotiated amongst all the landed Mars missions. At
landing, most mission planning tasks were completed
manually in Excel workbooks. InSight has since taken
advantage of Blackbird’s powerful capabilities to automate
mission planning tasks and generate command products.

The first task that was automated for mission planning was
the optimization of Direct-to-Mars X-Band uplink windows.
After DSN negotiations are complete, DSN schedulers
provide mission planners information about DSN tracking
windows. Within allocated DSN tracks, X-Band uplink
windows should be scheduled for maximum uplink data
volume and Radio Science Experiment (RISE) science
return. Blackbird’s simulation engine, built-in DSN model,
and constraint-checking capabilities made it the best
framework with which to automate this task.

The X-Band Blackbird scheduler works with three sets of
input data: a set of Data Relay Capability Files (DRCF) that
provide lists of windows during which uplink and downlink

15

Figure 11. Visualization of InSight’s WUTT generation automation, as displayed in RAVEN

Figure 10. Structure of InSight WUTT adaptation. Red
designates code shared with other mission planning routines.

are supported at different rates, the SAF, and an Overflight
Summary File (OSF) containing timing and parameters for
all the orbiter relay overflights. For the DCRF, Blackbird’s
resource modeling capabilities track when uplink is
supportable and at what rates. Blackbird’s multi-mission
DSN model reads the SAF and places Station Allocation
activities automatically. Multi-mission code reads in the
OSF and then a scheduler sets resources to indicate X-Band
keep-out zones. The scheduler can then use resource-aware
decomposition to avoid scheduling X-Band passes in
parallel with UHF overflights. With these three sets of data,
Blackbird calculates the best X-Band communication
windows by matching DSN station allocations to the highest
uplink rates that are supported within those allocations. This
process takes hours in Excel and seconds with Blackbird.

The second task that was automated for mission planning
was the creation of the Wake-Up Time Table (WUTT), a
contingency command product that contains a set of
wakeup, shutdown, and transmission commands. In the
event that the lander stops executing its main onboard
sequences, InSight will wake up and shut down according to
the commands in the WUTT, and await instructions from
Earth via the transmission commands. It would take a
relatively serious anomaly for InSight to fall back to the
WUTT, and therefore the transmission capabilities in the
WUTT must be sufficient for rapid anomaly responses.

The WUTT must be power conservative in addition to
containing sufficient transmission capabilities. There are
scheduling constraints on wake-up entries, including:
number of communication windows per day, maximizing
data return and uplink volume, balancing X-Band and UHF
transmissions, minimum and maximum sleep durations,
total number of entries, and more. The WUTT can be
generated using roughly the same sets of data that are used
by the X-Band scheduler: 1) DRCFs to determine best X-
Band times, 2), a SAF to determine available X-Band times
and 3) an OSF from which to pick UHF relay overflights.
From these inputs, the scheduler produces a WUTT that

meets all of the requirements above, as well as a TOL and a
review product. See Figure 10 for the structure of the
InSight WUTT adaptation, and Figure 11 for the activities
comprising a sample WUTT that Blackbird produced.

The WUTT automation was validated with thorough
regression and unit testing that was only possible due to the
use of a standard programming language. These tests
reduced the risk to the mission of switching to the
automation and reduced the costs of verifying changes.

16

Figure 12. Output of NISAR’s Blackbird adaptation, as displayed in RAVEN, showing the high-level activities

The third target task for mission planning automation is the
creation of the Overflight Request File (ORF), which is
upstream of the other two processes. In the manual process,
mission planners must examine the list of geometrically
available overflights, then deconflict with passes claimed by
other landed assets to determine which to request, then
perform calculations to determine which are the most viable.
As currently envisioned, the automation will give the
mission planner all the calculated information in one place
they need to make the decision, then the passes will be
manually chosen based on that.

NISAR

NISAR is an Earth-orbiting satellite whose mission is to use
synthetic aperture radar (SAR) to map the Earth’s surface
every 12 days. After launch in 2022, the spacecraft will first
undergo a commissioning phase that is required to be
completed within 90 days before it begins science
operations. During commissioning, operators need to deploy
the spacecraft’s antenna, perform checkouts of its
maintenance systems, and perform more than 15 types of
calibrations of the instruments [17]. Each type of calibration
has prerequisites on the completion of other calibrations and
engineering activities, and each require observations at
different types of targets. In February 2019, the NISAR
mission planning team began using Blackbird to help
understand the time sensitivities of this highly
interdependent system to variations in shift schedules,
missed observation opportunities, activity durations, and
other factors. Prior to starting to work with Blackbird, the
creation of a mission plan that was self-consistent and
satisfied the constraints was a manual process that took
days, which made it challenging to react to changing
calibration requirements and duration estimates.

Each calibration that must be scheduled consists of multiple
instances each of five types of sub-activities: data

acquisition, downlink, ancillary data delivery, data
processing, and analysis. Data acquisition can only be
scheduled during view periods provided by Systems Tool
Kit, which can be for homogenous, point, or radar-bright
ground targets, and it can only be scheduled when there is
enough data storage and the relevant SAR is not being used
for another acquisition. Downlink duration is modeled as
proportional to the amount of data collected, and it can
occur in parallel with waiting for ground reception of
ancillary orbit products. Data processing takes a
configurable constant amount of time per calibration type.
Finally, analysis of the results for that observation can
happen immediately afterwards for some calibration types,
but for others the scheduler must wait until work hours for
the operations personnel begin. Some, but not all, of the
analyses can happen in parallel with each other or other
components of the calibration. If an analysis must wait until
another condition is true to begin, a nested forward dispatch
scheduler is created to place it. After some calibrations have
finished all their analysis segments, command preparation at
JPL and uplink radiation at ISRO must be scheduled during
their personnel’s respective shifts, which are configurable.
Some of these activities are visible in Figure 12.

In Blackbird, three different superclasses of calibrations
were created to capture each underlying behavior: one that
allowed parallel analyses, one that mandated serial analyses,
and one that has one long analysis for all observations. For
each calibration required, a line in an input configuration
file specifies which of those behaviors is needed, whether
uplink is required after the calibration is over, durations for
the sub-activities, what target types are required, and the
number of observations required. Each calibration becomes
one activity with a Condition required for the calibration to
begin, and all of them and their children’s 75 total forward
dispatch sections execute in parallel during a single
remodel(), as shown in Figure 13.

17

Figure 14. Abbreviated structure of and data flow
through Lander Blackbird adaptation

Figure 13. Structure of NISAR Blackbird adaptation

Blackbird’s on-line scheduling capability makes expressing
this problem relatively simple, even though NISAR was not
one of the original mission use cases considered. Since the
requirement is simply to minimize time spent in
commissioning phase, a greedy approach is sufficient and
no search is needed. That the engine automatically starts the
threads when the conditions are available means the adapter
can avoid having to manually work out algorithms that
would place the sub-activities in a conflict-free way.

The adaptation was built by one engineer in less than two
months half-time, and for the Mission System Critical
Design Review, the project was able to use it to examine the
effects of the aforementioned parameters on the timeline.
Rescheduling the entire commissioning phase, about 1,000
constituent activities, for a given configuration file takes
less than 10 seconds on a 2015 MacBook Pro. The
simulation will continue to be refined going forward.

Europa Lander

Europa Lander is a mission concept that aims to sample the
surface of Europa in the 2030s. The development team has
been through several design iterations. For the most recent
one, the concept was switched from a lander that would use
a relay orbiter to one that would communicate Direct-to-
Earth. Around the time of that change, it was decided to
switch to Blackbird for future systems simulation work.

The Blackbird model takes as input a landing time and
SPICE kernels describing the location of the lander, builds
an activity plan, and simulates resources at the level of
individual power devices and data channels to arrive at
estimates for the lifespan of the Lander and its total science
return. The activity plan is built using rules encoded into the
scheduler based on geometric conditions. The scheduler
decomposes into a tree of activities, as shown in Figure 14.

The encapsulated nature of the activities means that large
changes to the scenario can be created through changes to a
single activity. For instance, modifying just the high-level
Sampling Cycle activity can change which view periods are
used for sampling, processing, or transmission. The
adaptation heavily relies on the ability of activities to spawn
other activities in complex combinations, which is greatly
enabled by being able to write code to set behavior.

The Lander adaptation uses the multi-mission data model
and the multi-mission power interface, which is
implemented by a simple primary battery model that only
tracks energy consumption. Since much of the energy could
be used by component heaters, and because there are
thermal constraints on the hardware that drive the mission
timeline, a rudimentary thermal model also had to be
included. Blackbird used inter-process communication to
call the Mission Concept Review reference two-node
thermal model written in Python and include those results in
its timelines. The Blackbird adaptation is less than 1,000
lines of code and runs in 1.7 seconds when executing
everything except the thermal model on a 2015 MacBook
Pro.

18

Figure 16. Structure of current ASTERIA adaptation

Figure 15. Subset of output of Europa Lander’s Blackbird adaptation, as displayed in RAVEN

This adaptation is used primarily for trade studies. One of
the more detailed studies involved examining the mission
timeline in the event of an HGA failure which would
necessitate using a low-gain antenna for downlink. The
results of the study motivate future deeper exploration into
antenna configuration and the possibility of using a
medium-gain antenna for the lander. A sample plan created
by the adaptation as displayed in RAVEN is shown in
Figure 15, along with the resources predicted to be used.

Since Monte Carlo methods are of interest to the Lander
team, the model was successfully run massively in parallel,
where parameters for each run were chosen using Latin
Hypercube Sampling. A python script sampled distributions
to obtain parameters for each run and off kicked hundreds of
Blackbird runs in parallel, each of which was deterministic
given the parameters. The script then collated the data from
the runs and created scatter plots showing quantities of
interest like battery lifetime under different assumptions.

ASTERIA

The Arcsecond Space Telescope Enabling Research In
Astrophysics (ASTERIA) is a 6U cubesat that was deployed
from the International Space Station (ISS) into low Earth
orbit in November 2017 for a three month prime mission
[18]. Its prime mission involves imaging stars to detect
orbiting exoplanets as a proof of concept to show that a
cubesat can accomplish such a task. As of October 2019, the
satellite is in its third extended mission and still detects
orbiting exoplanets. In addition, the mission also hosts other
experiments of various natures.

The Blackbird model for ASTERIA was developed because
of a desire for more flexible and more automated planning
tools. ASTERIA sequences are generated on the ground by
tools written in MATLAB that partially validate the
sequences. Typically, a sequencing engineer authors and
validates daily background sequences for the spacecraft.
The engineer must schedule the activities as well as check
some flight rules manually. An approving mission manager

must also double check these flight rules. Science sequences
likewise have to be checked by a sequencing engineer and a
manager. The current tools are too brittle to be adapted to
automate these manual processes.

In its current stage of development, the Blackbird adaptation
is ready and being validated for use in operations. Blackbird
produces a valid ASTERIA sequence in 5.1 seconds on a
2017 MacBook Pro. The adaptation is not fully integrated
into the operations workflow and cannot yet be used to
generate flight-ready sequences. However, there is a clear
path forward to relieving the onus of scheduling background
sequence activities for a sequencing engineer. Figure 16
displays the structure of the adaptation, and Figure 17 shows
the activities which write entries in the output sequence.

19

Figure 17. Activities scheduled by ASTERIA’s Blackbird adaptation, as displayed in RAVEN

In order to generate the sequence, Blackbird’s sequencing
infrastructure had to be extended to write out the ASTERIA
‘seq’ format, which did not have prior support. Adding the
classes needed to write out sequences in this format was
completed start-to-finish in 2 hours. The entire rest of the
adaptation to date has been built in less than one work-week
by a single engineer who had little experience with Java
before beginning this work.

Planned improvements to the adaptation will allow sequence
engineers to author science observation sequences with a
flexible GNC model. One of the most difficult constraints
on science observation sequencing is avoiding a fault that
trips when the angular momentum of the spacecraft is too
high. This can occur when doing a prolonged observation at
a single star, and will worsen as ASTERIA’s orbit degrades.
Better automation will allow the spacecraft to continue
making full use of its capabilities, instead of losing
observations with sub-optimal activity placement. By
leveraging the modeling capabilities of Blackbird, the
ASTERIA operations team expects to see increased science
return with less effort needed from sequencing engineers.

 6. CONCLUSIONS
Blackbird has proven itself as a tested operations-grade tool
that reduces cost and risk on six missions currently.
Designed with ease of use in mind, it has proved a natural
choice for additional planning tasks beyond the traditional
short-range activity planning. Its success is in large part due
to the principles followed while in development, and
specific design choices that shape how it behaves.

There is much work to do for each of the missions that use
Blackbird, which is detailed in the corresponding
subsections above. As that work occurs, a continued focus
will be improving the multi-mission toolset to make it
increasingly more capable and easier to use. In terms of the
core framework, there are several ideas in work for
improving usability, including increasing flexibility of the
way activities can interact with conditions, and improving
the ease of use for making complicated resources. The team
is excited to work in this new open environment where
engineers are encouraged to build on each other’s work.

 ACKNOWLEDGEMENTS
The work described by this paper was performed at JPL,
managed by The California Institute of Technology, under
contract to the National Aeronautics and Space
Administration. The authors would like to thank Marcel
Llopis, Daniel Finnerty, Debarati Chattopadhyay, Teerapat
Khanampornpan, John Kwok, David Seal, Grace Tan-
Wang, Pauline Hwang, and Priyanka Sharma for their
support of Blackbird. The authors would also like to thank
Zac McLaughlin and Samuel Fleischer for their early
helpful feedback, and Sarah Bairstow, Marisol Arenas, and
James Ashley for their detailed reviews of the paper.

Copyright 2019 California Institute of Technology.
U.S. Government sponsorship acknowledged.

REFERENCES

[1] P. F. Maldague, S. S. Wissler, M. D. Lenda, and D. F.
Finnerty, “APGEN Scheduling: 15 Years of Experience in
Planning Automation,” in SpaceOps 2014 Conference,
Pasadena, CA, 2014.

[2] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan,
“ASPEN: A framework for automated planning and
scheduling of spacecraft control and operations,” in Proc.
International Symposium on AI, Robotics and Automation in
Space, 1997, pp. 181–187.

[3] F. L. Ridenhour, C. R. Lawler, K. Roffo, M. Smith, S. S.
Wissler, and P. F. Maldague, “InSight Cruise and Surface
Operations: Integrated Planning, Sequencing and Modeling
using APGen,” in 2018 SpaceOps Conference, Marseille,
France, 2018.

[4] M. D. Johnston and G. Miller, “Spike: Intelligent
scheduling of hubble space telescope observations,”
Intelligent Scheduling, pp. 391–422, 1994.

[5] P. Van Der Plas, “MAPPS: a Science Planning tool
supporting the ESA Solar System Missions,” in SpaceOps
2016 Conference, Daejeon, Korea, 2016.

20

[6] G. Simonin, C. Artigues, E. Hebrard, and P. Lopez,
“Scheduling Scientific Experiments on the Rosetta/Philae
Mission,” in Principles and Practice of Constraint
Programming, vol. 7514, M. Milano, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 23–37.

[7] J. R. Doubleday, “Three petabytes or bust: planning
science observations for NISAR,” presented at the SPIE Asia-
Pacific Remote Sensing, New Delhi, India, 2016, p. 988105.

[8] A. Van Deursen and P. Klint, "Little languages: Little
maintenance?," Journal of Software Maintenance: Research
and Practice, vol. 2, pp. 75-92, Mar. 1998.

[9] M. Mernik, J. Heering, and A. M. Sloane, “When and
how to develop domain-specific languages,” ACM Comput.
Surv., vol. 37, no. 4, pp. 316–344, Dec. 2005.

[10] E. W. Ferguson, S. S. Wissler, B. K. Bradley, P.
Maldague, J. Ludwinski, and C. R. Lawler, “Improving
Spacecraft Design and Operability for Europa Clipper
through High-Fidelity, Mission-Level Modeling and
Simulation,” in 2018 SpaceOps Conference, Marseille,
France, 2018.

[11] J. Gall, Systemantics: the underground text of systems
lore : how systems really work and especially how they fail.
Ann Arbor, MI (3200 W. Liberty, Ann Arbor 48103):
General Systemantics Press, 1990.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software. Reading, Mass: Addison-Wesley, 1994.

[13] “Projects,” The State of the Octoverse. [Online].
Available: https://octoverse.github.com/projects.html.
[Accessed: 02-Oct-2019].

[14] “TIOBE Index” [Online]. Available: https://www.
tiobe.com/tiobe-index/. [Accessed: 02-Oct-2019].

[15] T. Suganuma et al., “Overview of the IBM Java Just-in-
Time Compiler,” IBM Syst. J., vol. 39, no. 1, pp. 175–193,
2000.

 [16] C. A. Polanskey et al., “Psyche Science Operations
Concept: Maximize Reuse to Minimize Risk,” in 2018
SpaceOps Conference, Marseille, France, 2018.

[17] P. Sharma, J. R. Doubleday, and S. Shaffer, “Instrument
commissioning timeline for NASA-ISRO Synthetic Aperture
Radar (NISAR),” in 2018 IEEE Aerospace Conference, Big
Sky, MT, 2018, pp. 1–13.

[18] A. Babuscia, P. Di Pasquale, M. W. Smith, and J. Taylor,
“Arcsecond Space Telescope Enabling Research in
Astrophysics (ASTERIA) Telecommunications,” in JPL
DESCANSO Near Earth Design and Performance Summary
Series, Pasadena, CA, 2019.

BIOGRAPHY
Christopher Lawler received a B.S. in
Mechanical Engineering with a minor
in Computer Science from the
University of Maryland, College Park.
At JPL, he has worked on science
planning, mission planning, and
software development for InSight,
Psyche, Europa Lander, Dawn,
Europa Clipper, and NISAR. He is the

lead developer of Blackbird.
Forrest Ridenhour received a B.S. in
Aerospace Engineering from the
University of Maryland, College Park.
At JPL, he currently works on the Mars
2020 and InSight missions as a
software developer for science
planning, mission planning and
sequencing. He is also a developer of
Blackbird core. Previously, he has

worked on the Juno, MRO, and Europa Clipper missions
as a developer of activity planning and sequence
validation software.

Shaheer Khan received a B.S. in
Aerospace Engineering from the
University of Maryland, College Park
in 2017 and has since been with JPL.
He has worked on the development of
InSight's cruise and surface planning
and sequencing software suites. He has
also supported InSight during its

launch, cruise, and surface operations in various roles.
He is the current lead of InSight's Mission Planning and
Sequencing Team.

Nicholas Rossomando received a B.S.
in Aerospace Engineering from the
University of Maryland, College Park
in 2016 and has been at JPL since
2017. He works on sequence validation
software and tactical operations design
for the Mars 2020 rover mission.
Previously, he worked on operations

for the Opportunity Mars rover, including recovery
efforts following the 2018 global dust storm.

 Ansel Rothstein-Dowden received an
M.S in Aerospace Engineering, a B.S.
in Aerospace Engineering, and a B.S.
in Applied Mathematics from the
University of Colorado, Boulder. He is
a sequence engineer on ASTERIA and
works on planning software for Europa
Clipper.

